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Passive, Wireless Surface Acoustic 
Wave (SAW) Sensors (NETL & CMU)

Distributed Fiber Optic Based Chemical Sensors

Distributed Optical Fiber 
Chemical Sensors 

(Embedded in Cement)

Silicon IC 
Wireless Devices 

in Cements

Embedded Sensor Technology Suite for 
Wellbore Integrity Monitoring

- Low Cost, Complementary Device Platforms (Optical, Microwave)
- Multi-Functional (pH, Other Chemical Proxies, Temp., Strain)
- Early Detection of Leakage Onset BEFORE it Happens
- Detection and Localization of Leaks That Occur

Distributed Optical Fiber Sensors
(Additively Embedded in Casing)
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Novel Wireless Telemetry 
Leveraging High Temperature 

Coaxial Cables and Antenna Designs
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- A suite of technologies for wellbore 
integrity monitoring.

- Chemical sensing of high priority 
parameters (pH, corrosion onset, etc.)

Project Overview

❖ Chemical/pH Sensing Layers (NETL) ❖ Organic pH Sensitive Coating Fabrication/Deployment (IOS)

➢ pH sensing materials: TEOS and Nano-Au incorporated-TEOS

• TEOS (tetraethoxysilane) Coating
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• Nano-Au-TEOS Coating

➢ Sensing Principle : Evanescent Wave Sensors
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→Eliminate Electrical Wiring and
Contacts at the Sensing Location

→Tailored to Parameters of Interest
Through Functional Materials

→Compatibility with Broadband
and Distributed Interrogation

➢ Polymeric Matrix: pHEMA

➢ pH Indicator: thymolphthalein  
Vinyl functionalization

➢ Sensor Cladding: pH Indicator 
copolymerized with pHEMA
cladding material
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Polyurethane
Degradation

-Stable up to 200 – 250 °C
-Excellent water permeability
-Translucent

-Stable up to 248 °C
-Color variation from pH 7.5 to 11.5
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Manual fabrication of 
Short Sensor Segments

In-line fiber recoating of 
long fiber optic sensors

-Accelerated curing 
process < 60s
-Moderate curing 
temperature 100 °C or 
photocuring
-Controlled pre-polymer 
viscosity for uniform 
coating distribution

UV-curing setup

Thermal-curing setup

➢ SAWs for Liquid Phase Application

Measure 𝜟𝒗 in terms of 
time delay.
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NETL’s SAW Devices:

f0 = 520 MHz
Substrate: 36 Y-X LiTaO3
IDTs: Al or Au

Passive, Wireless Silicon Integrated 
Circuit Sensors (UCLA)

Embedding of Sensors in Cement and 
Casing Materials (NETL & U Pitt)

➢ CT scans of cement samples with 
sensors embedded

- Optical fibers embedded in cement (1’’OD)

- SiIC chip (5-7mm) 
embedded in cement

➢ Distributed Sensing

Inductor rings

Antenna

➢ Mechanical testing of cement 
with sensors embedded

➢ Sensing Principle and System setup
RX

TX

pH Sensing 
Electrodes

Wirelessly Powered 
Microchip

Open voltage from -0.11 to 0.13V 
for pH changing from 10 to 4

➢ Sensing Results

pH=4pH=10

Control voltage (Vctrl) and oscillator 
oscillation frequency as a function of 
Sensed voltage (Vsen) from electrodes 

Wireless powered chip transmits 
back at frequency 2.173~2.178GHz 
for different solution pH value

➢ SAW Attenuation (𝛼) and Velocity (𝑣):

➢ Simulation and Experimental Results

➢ Fabrication and Scale-up Capabilities

➢ Embed fibers in high temperature 
metals, including curved parts.

Laser Engineered Net Shaping (LENS)

➢ Embedded Fiber Sensors for Defect 
Detection using Artificial Intelligence
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